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In this paper,  a  new kind of boundary  condit ions for computer  experiments of ther 
modynamic systems is introduced. The  merits of using a  D-dimensional system as the surface 
of a  (D + I)-dimensional sphere are discussed in general.  Finally it is shown that these 
“spherical boundary  condit ions” have  some advantages compared with others. 

1. INTR~DuC~~N 

In computer experiments, the number N of molecules which can be handled is 
typically 100-1000. Comparison with theory or real experiments is delicate: Usually, 
theory yields the thermodynamic limit and experiments deal with macroscopic num- 
bers of particles. There are two possible ways to estimate the thermodynamic limit 
from the results of computer experiments: 

(a) using different N in various computer’experiments and trying to extrapolate 
to N-+co [I-3], 

(b) using theoretical knowledge of the deviation from the thermodynamic limit 
14-6 I. 

Despite of all the progress made since the introduction of molecular dynamics 
(MD) and Monte Carlo (MC) the microscopic nature of computer experiments 
remains a problem 171. In the present paper, this problem is attacked by introducing 
a new kind of boundary conditions (BC) for computer experiments, the spherical BC. 
First, the known BC and their geometric properties will be considered (Section 2). In 
Section 3, the new BC are defined. Then the finite-size effects are investigated for the 
known BC (Section 4) and the new BC (Section 5). Section 6 deals with the realiza- 
tion of computer experiments with spherical BC. As a typical quantity, the pressure P 
of classical one-component equilibrium systems will be studied. The molecules are 
assumed to interact via central two-body forces which are spherically symmetrical. 
The canonical ensemble (for MC) and the microcanonical ensemble (for MD) will be 
considered throughout this paper. 
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2. FIXED AND PERIODIC BOUNDARY CONDITIONS 

The finite number N of particles induces some kind of boundary which is absent in 
the thermodynamic limit. It seems to be natural to enclose the volume in a vessel 
(fixed BC). For Nz 100, however, a great portion of the molecules is close to the 
surface, and one can expect that the bulk properties are not well reproduced (see also 
Section 4). Thus, another kind of BC has been used in the literature [8]: The periodic 
BC (toroidal BC). Besides the basic volume, the space is now filled by periodic 
images of this basic cell. Thus the system is formally infinite, and there is no surface. 
Yet, each of the N original particles has an infinite number of “ghost particles” and 
the distance between two particles is not defined uniquely. To overcome this 
difficulty, either a cutoff radius of the interaction potential can be used, or the 
minimum of the possible distances between two particles is defined as the “real 
distance” (minimum image convention). Both procedures have the disadvantage that 
the force between two particles becomes a discontinuous function of their location. 

Another possibility to imagine the periodical BC is to embed the D-dimensional 
system in a space of D + 1 dimensions, the element of volume remaining Euclidean. 
For instance, a one-dimensional box becomes an annulus, a two-dimensional box 
becomes a torus (hence the name “toroidal BC”). From this point of view, there are 
no ghost particles, but the distance between two molecules is also not uniquely 
defined since there is an infinite number of geodesic curves between two particles 
(D > 1). 

Table I shows the important geometric properties of the infinite Euclidean space 
and of a finite volume with fixed and periodic BC. For the last column (spherical 
BC), see Section 3. “Homogeneous” and “isotropic” mean that there is no differen- 
tiation concerning the importance of certain points and directions, respectively. The 
property “singly connected” will become important in Section 4. It means that every 
closed curve can be contracted continuously to a single point. This is not the case for 
periodic BC; consider, e.g., a circle which winds around a torus [4]. 

TABLE I 

Geometrical Properties of a D-Dimensional Cell (D > 1)” for Various Boundary Conditions 

Property 
Infinite 
volume 

Fixed Periodic 
BC BC 

Spherical 
BC 

Surface absent 
Homogeneous 
Isotropic 
Euclidean 
Singly connected 
No. of particles 
No. of distances 

between two points 

+ - + + 
+ - + + 
+ - - + 
+ + + - 
+ + + 
cl) N m(N)” N 
1 I co 2 

’ For D = 1, there are several exceptions. 
h Two equivalent points of view of the same BC; see Section 2 
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3. SPHERICAL BOUNDARY CONDITIONS 

Table I shows that the geometric properties of the thermodynamic limit are only 
partly reproduced by the fixed and periodic BC, respectively. The interpretation of a 
D-dimensional system with periodic BC as a generalized torus embedded in a 
(D + I)-dimensional space suggests the definition of a new kind of BC, the “spherical 
BC”: The D-dimensional cell forms the surface of a (D + 1)dimensional sphere (with 
the usual spherical trigonometry). 

Inspection of Table I shows that the properties of the spherical BC yield the best 
overall agreement with the infinite cell. This is due to the high symmetry of the 
surface of a sphere. Two distinct points of the sphere have only two distances 
corresponding to the two segments of the great circle. Thus, besides using a cutoff 
radius and the minimum image convention, a further possibility (which may be called 
“double distance convention”) exists for spherical BC: If the distances between two 
particles are called rmin and rmax and, e.g., a Lennard-Jones potential (parameters 
E, a) is assumed, it is convenient to define the “double distance” potential U as 

If R is the radius of the (D + I)-dimensional sphere defining the spherical BC, 
r max = 27rR - rmin. U has the property that two molecules which are very close to one 
another interact with the usual LennarcCJones potential since the terms with rmin are 
predominant. For increasing distance, the force decreases faster than usual. The two 
particles correspond to antipodal points if r,in = rmax = OCR. The continuous force 
vanishes in this case (Uf 0). Thus, antipodal points simulate the case in the ther- 
modynamic limit where two particles have infinite distance. In the thermodynamic 
limit (R + co), rmax becomes infinite in any case, and only one meaningful distance 
(rmin) is left. If the terms with rmax are also absent for finite R, this corresponds to the 
minimum image convention, the force being discontinuous at rmin = nR. Further 
reduction to U = 0 if rmin > rco results in a cutoff radius, the potential being discon- 
tinuous at rmin = rco. Thus, the minimum image convention is a special case of using 
a cutoff radius (rco = nR) for spherical BC. 

We have discussed some properties of the spherical BC. The essential difference, 
however, to all other BC lies in the fact that the system is not Euclidean for spherical 
BC. This will be investigated in Section 5. 

4. FINITE-SIZE EFFECTS OF THE PRESSURE 

First we consider the virial expansion of the pressure P in the thermodynamic 
limit: 

= 1 + f Bip”. (2) in 2 
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p is the limit of the number density N/V, k is Boltzmann’s constant, and T is the ab- 
solute temperature. The virial coefficients Bi are constants and consists of Mayer 
cluster integrals, e.g., 

B, = ji”, B:(P), B, = ;“, B:(p), + 

(3) 

fii: exp[-U(rii)/kT] - 1. 

U(r,) is the spherically symmetric pair potential. Equation (3) also defines volume- 
dependent cluster integrals if the thermodynamic limit is not taken. The symbol p 
indicates that the integrals are functions not only of the value V, but also of the shape 
of the volume including the BC (for spherical BC, this shape is of course always the 
same). This implicit volume dependence is a very important feature of finite-size ef- 
fects [4] and will be considered later. Now the simpler explicit number dependence 
will be studied. The pressure due to this N dependence can be written as [4-6] 

= 1 + f Bi(N)pi-‘. 
i=2 

The B,(N) depend on the ensemble, but not on the shape of the volume. For the 
canonical NVT ensemble, 

B,(N)= (1-k) B,, 

B3(N)= (l-+)(d) B1+;(l-+) B;, (5) 

Bi(N) = Bi -t (UJN) + O( l/N’), i > 2. 

The ai are constants. Thus, a MC-experiment (NVT) yields the explicit number 
dependence 

(6) 

If we restrict ourselves for the moment to hard disks and hard spheres, the 
microcanonical and canonical ensembles are identical. Thus the MD and MC values 
are directly comparable using the relation [ 1 ] 

P (SE- 1 1 
MD =g&& 1) MC) (7) 
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TABLE II 

IEi(N) - B,J/B, for Hard Disks and Spheres (NVT Ensemble) 

N(disks) N(spheres) 

i 100 200 100 200 

2 -0.01000 -0.00500 4.0 1000 -0.00500 
3 -0.0044 8 -0.00223 +O.OO 188 +0.00097 
4 -0.00278 -0.00142 -0.00258 -0.00 149 
5 -0.00265 -0.00129 -0.00273 -0.00060 

the factor N/(N - 1) being due to the fact that the center of mass is fixed additionally 
in MD for periodic and spherical BC. Thus also for MD Eq. (6) is valid with 
[a@) + I ] instead of a@). Since the B,(N) are functions of (B*,..., BJ, the simple N 
dependence can in principle be calculated from the thermodynamic limit itself. Since 
for hard disks and spheres the Bi up to B, are known very accurately 19-l 11, B,(N) 
up to B,(N) can be given accurately (Table II). Table II shows that the explicit N 
dependence is especially systematic for disks and the corrections to the ther- 
modynamic limit are small (less than 1% for N > 100). 

Now we also consider the volume dependence due to the cluster integrals them- 
selves; compare Eq. (3). Using the definition 

(8) 

where the shape of V remains constant during the differentiation, the second and third 
virial coefftcients including all finite-size effects become in the NVT ensemble 

B,(N, 9) = 1 - + B,(v)), 
i 1 

&(N,8)=(1-;)(l-;)B@)+;(l-+I B;(p))B,(P). 
(9) 

This can be derived from the results of [4]. Not much can be said about the con- 
vergence of the virial expansion of the pressure. Even in the case of the ther- 
modynamic limit, Eq. (2), our knowledge is very restricted [ 121. It can be hoped that 
the virial expansions make sense for the entire fluid range up to the (first) phase tran- 
sition. 

Contrary to the low-order B,(N), the B,(P) are very complicated to calculate even 
for very simple systems. For rigid BC, the deviation of B,(P) from the ther- 
modynamic limit comes from the existence of a surface (compare Table I) which in- 
duces the properties “inhomogeneous” and “anisotropic.” Due to the surface effects, 
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the main volume dependence is proportional to the ratio (surface/volume), i.e., V- I”’ 
for a D-dimensional system. Thus, 

[B[( tp - B,]/B, z ci v-‘/D, fixed BC. (10) 

For a given p, Y-1’D corresponds to N-‘lD. On the other hand, N-’ is the leading 
term for the deviation of B,(N) from Bi, see Eq. (5). Thus, especially for D > 2 the 
implicit dependence is predominating for fixed BC. This leads to a considerable 
deviation from the thermodynamic limit as expected. 

For periodic BC, a surface is absent. The implicit volume dependence comes from 
the fact that the volume is not singly connected (see Table I). The line segment 
between two identical particles (particle, ghost particle) can be interpreted as a closed 
curve through the particle. This curve cannot be contracted further. The minimum 
distance with this property is the minimum side length lmin of the rectangular periodic 
cell. Lebowitz and Percus [4] showed that 

Bi(F) = Bi for i < Z&u, periodic BC, (11) 

a being the range of the intermolecular forces. The value of [Bi( p) - Bi] for greater i 
cannot be calculated. For hard spheres, Eq. (11) means that about the first live virial 
coefftcients Bi( 0 remain unchanged for N z 100 and high fluid densities. This is a 
considerable advantage over the fixed BC. For long-range potentials, the gain is not 
so obvious. Furthermore, at high densities many virial coefficients contribute to the 
equation of state, and the finite-size effects cannot be evaluated then. Experience 
shows that the periodic BC are very good for one-phase systems but yield inaccurate 
results close to phase transitions [ 12, 131. This agrees with the intuitive argument that 
the periodic cell favours solidlike structures, especially if N is chosen to fit into a 
crystal structure. For instance, this influences the configurations sampled close to the 
fluid-solid transition for hard disks or spheres. 

5. VOLUME-DEPENDENT VIRIAL COEFFICIENTS FOR THE 
SPHERICAL BOUNDARY CONDITIONS 

For the spherical BC, the property “non-Euclidean” alone is responsible for the 
volume dependence of Bi+ (0 and of Bi( ~. The cluster integrals (Eqs. (3), (8)) have 
to be evaluated for non-Euclidean coordinates (see the Appendix for explicit 
calculations). Trigonometric functions such as sin 0 = 8 - 8’/6 + O(0’) come in. 
Since every second power of 8 is missing in the power series, the virial coefftcients 
become 

[B,(o - Bi]/Bi= FiV-2’D + O(V”‘“), D> 1, (12) 

instead of the dependence (ci V-“D) for fixed BC (see Eq. (10)). The volume depen- 
dence starts with i = 2 and is a systematic function of V as in the case of fixed BC. 
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TABLE III 

Finite-Size Effects of the Pressure for Spherical BC 

Dim. D Explicit Implicit Combined effects 

The advantage of the spherical BC is the factor Y-z’0 (or NVLID for given p) instead 
of N-‘lD, which means a much smaller implicit volume dependence. 

Table III shows the powers of N which can be expected due to finite-size effects 
(spherical BC); compare Eqs. (5), (9), and (12). It is realistic to assume that for 
N > 100 all dependencies starting with Ne4” are within the statistical error of P 
obtained by computer experiments. This means that in three dimensions it is possible 
to lit the pressure data obtained with spherical BC for different N to a curve 
Plimit + aN-“’ +/IN-‘. The term /3N-’ only comes from the explicit N dependence. 
Therefore, PN-i can be estimated for hard spheres (see Table II), which simplifies the 
problem further. 

In two dimensions, the situation is even simpler. Both explicit and implicit depen- 
dencies yield the same powers of N. Thus, a linear fit in l/N is sufficient to estimate 
the thermodynamic limit: 

(13) 

This section has shown that spherical BC may be more convenient for computer 
experiments than the known BC. In a certain sense, the spherical BC and the 
periodical BC are complementary: The periodic BC favour solid configurations, the 
spherical BC favow fluid configurations. No perfect crystal structure can be 
generated for spherical BC except for singular cases (e.g., 12 disks forming a 
dodecahedron on the surface of a sphere). Therefore it might be attractive to compare 
the results obtained by periodic BC and spherical BC, respectively. 

6. THE ACCOMPLISHMENT OF COMPUTER EXPERIMENTS USING 
SPHERICAL BOUNDARY CONDITIONS (NVTENSEMBLE) 

Calculation of the pressure from computer experiments with spherical BC has been 
left open up to now. We consider, e.g., the relation 

= 1 + PB, g(u), (14) 

which is valid for D-dimensional hard spheres (with diameter a) in the ther- 
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modynamic limit 191. Is it also valid for spherical BC? If one checks the derivation of 
Eq. (14) (see, e.g., [14]), one can see that the pressure equation of a spherically sym- 
metric potential U(r) becomes 

P 
I 

dW9 -- 
= ’ - 2DkT y 

r -g(r) d”r 
dr (15) 

for spherical BC. This is formally the same as that for the thermodynamic limit. 
However, the volume element dDr is not Euclidean now; compare the Appendix. The 
radial distribution function g(r) is defined as usual, but also with the non-Euclidean 
volume element. For the D-dimensional hard-sphere potential, Eq. (15) further 
reduces to 

(--&-) = 1+ [y$yD-‘pB2g(u). (16) 

Equation (16) is the counterpart of Eq. (14), R being the radius of the (D + 1) 
dimensional sphere; see Section 3. g(u) can be evaluated in computer experiments as 
usual. By means of (16), it is possible to obtain the hard-sphere pressure in computer 
experiments for spherical BC. 

It is interesting to expand the canonical g(r) in powers of p, 

g~r,,)=[l-~]l~+p[~~+~l-~~ b,,(r,,)] +O@')!, (17) 

where the notation b,,(r,,) is due to [9]. For D-dimensional hard spheres (diameter 
a), b,,(r,,) is the volume of intersection of two spheres (radius o) at distance r,>. 
Equation (16) together with Eq. (17) yields an expansion of (P/pkT) in powers of p 
which must yield the B,(N, P); see (9). Indeed, (16) and (17) result in 

B,(N, q’>= (1 -$)B2 [ si;ngqD-‘, 

B,(N, P)= (1 -$(l -g b,,(a)B, [ +.q”-’ 

+f(l-fiB;(P)B2[~+]“-‘. 

This corresponds to Eq. (9) with 

(18) 

(19) 

(20) 4(p) = h,(o) B,(q. 
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Equation (19) has been checked explicitly for D = 2, 3 (see the Appendix). It can 
also be used to simplify (16). Equation (20) is the generalization of 

b,&)B, =B,. (21) 

Equation (21) is valid in the thermodynamic limit [9, lo]. Thus, the equivalence 
between the expansion of (P/&r’) in Mayer graphs (Eq. (3)) and Mayer-Montroll 
graphs as, e.g., b,,(a) (compare Eqs. (14) and (17)) yields generalized relations 
between the cluster integrals for spherical BC. 

To test the spherical BC for the first time, a MC computer experiment will be done 
for hard disks at high fluid densities and the fluid-solid transition. For hard disks, 
Bi (p) and B,(p) are known analytically; see Eq. (19) and the Appendix. By means 
of Eq. (20) and b,,(r) calculated for disks in the Appendix, B,(n is also known 
analytically for hard disks. Expansion in powers of (4nR*)) ’ = V- ’ yields 

B,(p)/B, = 1 --;B,V-’ + O(V-*), 

B3(P)/Bj = 1 - 1.295B2 V-’ + O(V-*). 
(22) 

Thus B,(N, 0 and B,(N, 0 are also known (see Eq. (9)): 

B,(N, p)/B2 = 1 - (1 + -+B,p) N-I + O(N-*), 

B,(N, P)/B, = 1 - (0.442 + 1.295B,p) N-’ + O(N-*). 
(24) 

For N = 100 and a typical high fluid density (l/ 1.40 of the close-packed density) this 
yields 

B,(N, v)/B, = 0.973, B,(N, q/B, = 0.979. (24) 

Therefore, the deviation of the pressure from the thermodynamic limit seems to be 
2-3% in this case. For N > 300, the pressure is expected to lie within the statistical 
error of P (which is about 1%) for the hard-disk fluid even close to the fluid-solid 
transition. Thus, the spherical BC are not only interesting from a general point of 
view (Section 3), but are also very promising for a special system which can be 
treated mathematically. 

APPENDIX 

The spherical BC imply calculations using non-Euclidean geometry. Some exam- 
ples are given in this appendix. Most calculations are carried out for dimension 
D = 2. The case D = 3 is more complicated but is not different from a qualitative 
point of view. 

For D = 2, the finite cell is the surface of a three-dimensional sphere of radius R. 
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The angles are denoted 0 (colatitude) and (p (longitude) as usual. The two- 
dimensional element of volume is 

dr2 = R2 sin 0 de dq = [R sin(r/R)] dr G$, (‘41) 

where r = OR < xR is the (geodesic) distance of a point from the north pole of the 
sphere. The distance between two points i, j is given by 

cos (2) =COs (+) COS (5) + sin( $-I sin( $ c~s(~~,.), (A2) 

oi,j being (oj - pi). Expanding the trigonometric functions results in the following rii 
(rmin or rmax; compare (1)): 

rij=rEuc’ 1 l-&[ rir~~,‘i’]2+O($) 1, 

(r~c’)2 = rf + t-j’ - 2ri rj cos vii. 

Now the coefficients B:( n, B,(P), B:( 0, and B,(p) will be investigated for hard 
disks (geodesic diameter a); compare Eqs. (3), (8). The potential is characterized by 

J&12) = -13 
= 0, 

r12 c 0, 
r12 > 0. 

Using Eq. (3) it follows that 

B;(Y)=nj”dr[Rsin(r/R)]=B2[-f$~-]2, 
0 

if Rlr > O, B, being $o’. From Eq. (8) it follows that 

B,(n=B, [Jw]. 

(A4) 

WI 

(A61 

Incidentally, the determination of B:(F) and B,( 0 for hard spheres is also very sim- 
ple, the result being 

B;(P)=6B, 
I 

(20/R) - sin(2u/R) 
-@qzy-- ’ 1 B,V? = B, [ si;;;$‘]z (A7) 

with B, = $ru”. Equations (A6) and (A7) check the general relation (19) for D = 2 
and D = 3, respectively. 

Now we concentrate again on hard disks. If b,,(r) is the non-Euclidean area of in- 
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tersection of two disks 1, 2 with geodesic radius u and distance r (r = rmin), B: (8) 
can be simplified (see Eq. (3)): 

B:(n = F 1” dr b12(r)[R sin(r/R)]. 
J Jo 

The explicit calculation of b,,(r), 0 < r < 20, is very complicated. The result is 

b,,(r) = 2R2 
I 

~(1 - cosp) - 2 sin-’ q 

+IcospJ [sin-’ (~~~~n) +sin-i(~~~)]l, (A9) 

a f r/(2R), p G a/R = (SB,/V)“*, q + sin a/sin p. If one expands b,,(r) in powers of 
l/R and introduces z e a/@ = r/(20), one gets, finally, 

b,,(r) = 2a2 
I 

[cos-’ z - z(1 -z2)“2] 

-g [cos-1 z - z(1 - z*)l’* (3 - 2271 + OQ?“) 
I 

) (AlO) 

b,,(o) = B2 
[(f-G) +$(-;+g) +O(g’)]. 

The leading term is the Euclidean value; compare [IS]. If one inserts (AlO) in (A8), 
one obtains 

B:(n=B; [(;-G)+b*(-$+g) +O($)]. (All) 

Calculating B,(o via Eq. (8) yields an almost identical expression, except that the 
coefficient of /I* is larger by a factor 2’. By means of (20) and using (A6) and (A9), it 
is even possible to obtain B,(o analytically for hard disks as claimed in Section 6. 

Now we turn to the general case of spherically symmetric potentials of finite range 
a. From (3) it follows for D = 2 that 

8:(q=-+,j 1 
v v 

dr, dr*fi*(r12) = - f , dr*f12(r,,) 
V 

min(a,nR) 
Z-n 

I 
dr2 [R sin(~2/Nf,2(~2). 

0 
W2) 

In (A12), the double integral has been simplified to give a simple integral due to the 
“homogeneous” property of the spherical BC. Without loss of generality, the center 
of molecule 1 can be set on the north pole of the sphere. The last expression of (A12) 
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comes from the “isotropic” property, which makes it possible to integrate over the 
angle pz. This is often done as an approximation for the other BC, but for the 
spherical BC this is exact. The upper limit of the last integral of (A12) is min(a, nR). 
If R is chosen to be greater than (a/n), this limit becomes independent of R. This will 
be assumed in the following. Then the only dependence on R comes from 
[R sin(rJR)]. If one expands this term in powers of R - ‘, one gets 

B;(~=B,+c;R-~+O(R-~), (A13) 

where c: is an R-independent integral. Incidentally, Eq. (A13) does not depend on 
the condition D = 2. Since V is proportional to R D, the expansion (A13) in powers of 
R ~’ is generally an expansion in powers of V~2’D; see Section 5. Now we turn to 
B:(n for D = 2. 

B;(r)= -$a+, [R sin(rJR)lfi2(r2)j~m~fil(~))~~(~21). (A14) 
0 

rii can be expanded in powers of R -2; 
in R-’ 

see (A3). Thus, B:(P) is also a power series 
eventually. 

The above considerations can be generalized as follows: For a D-dimensional 
system of molecules with spherically symmetric potential of range a, the virial coef- 
ficients B:(p) and Bi(F) can be expanded in a power series in Re2= VP”‘. The 
only condition is R > rca; i.e., the range of the potential does notcover the whole sur- 
face of the sphere. Even the case “spherically symmetric potential” is not a real 
restriction to the validity of the above results; this condition is only used in this paper 
for simplicity. 

Last, the assumption of finite potential range is removed. If one takes a fixed cutoff 
radius a, the situation is the same as above, but then the results are biased even for 
R -+ co. However, if one takes 

rcutoff = PRY, O<P<l, (Al5) 

the upper limits of the integrals (see, e.g., (A12)) are functions of R. This induces a 
further dependence on R. We study, e.g., the minimum image convention, p = 1. We 
choose a distance a beyond which only small long-range forces occur. This results in 

r > a: f12(r) r U(r)/kTz cr-“. (A16) 

If D = 2 and Rn > a, it follows for a given T that 

B:(n)=--lr j’dr,[R 
0 

dr, [R Wr21R > I -n 
T2 * 

I 
(A17) 

The last integral corresponds to a constant plus a value proportional to Rz-” (or 
RD-” for general D and n > 0). Thus one can also predict the finite-size behavior for 
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spherical BC if the range of the potential is not finite. The general result for B:(P) 
and B,(P) is 

Bi( P) = Bi + aiR ~’ + EiRD-’ + O(R -4), n > D. (‘418) 

Equation (A18) is valid not only for the m inimum image convention, but also for any 
cutoff radius (A15) and the double distance convention, Eq. (1). Only the coefficients 
ai differ. 

If n = D + 2 or n > D + 4, the term tiJD-” can be included among aiRe or 
O(R -4), respectively. In these cases, the extrapolation R -+ co of results obtained by 
computer experiments can be done in the same way as for potentials with fixed finite 
range; see Eq. (A13) and Table III. If n = D + 1, the contribution from the long- 
range part of the potential (proportial to R-I, i.e., N-‘lD for a given density p) 
becomes the predominant finite-size effect. If n = D + 3, this term (proportional to 
N-‘12) lies within the error of computer experiments for D = 2. For D = 3, the term 
is proportional to N-’ and thus can be ascribed formally to the explicit N dependence 
of B,(N, q for a given density p. 

Experience shows that for periodical BC difftculties occur concerning finite-size 
effects of potentials with n too low. However, it is impossible to attack this problem 
mathematically. For spherical BC, this problem has been solved by means of 
Eq. (A18). 
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